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Residual Stresses in Thick, 
Nonhomogeneous Coatings 

F. Kroupa 

Residual macrostresses in thick, nonhomogeneous planar coatings are investigated theoretically using 
the methods of the isotropic theory of elasticity. The dependence of the elastic properties and of the 
sources of residual stresses on the coordinate perpendicular to the interface is considered. The results can 
be applied to thick graded or sandwich coatings. A simplification of the results for the cases of homogene- 
ous and thin coatings is shown. Some differences for coatings on cylindrical and spherical surfaces are 
also mentioned. 
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1. Introduction 

Much attention has been paid to the theory of  macroscopic 
residual stresses in coatings (see, for example, Ref 1-3). Usually 
a platelike specimen is assumed, made of a homogeneous coat- 
ing on a homogeneous substrate, each with different physical 
properties. Approximations are often used for thin films when 
the thickness of the coating is much smaller than the thickness of 
the substrate. 

Three main theoretical approaches can be distinguished in 
the literature. In the first, "elementary" approach, the residual 
stresses are calculated for a known distribution of the sources of 
residual stresses (changes of temperature, distribution of impu- 
rities, etc.) in the final coating/substrate system (Ref 4-7). 

In the second, more complex, approach, the gradual forma- 
tion of the residual stresses during and after the deposition is 
modeled (Ref 8, 9). In the third, inverse approach, a theoretical 
analysis is used to evaluate residual stresses from measurements 
of deformation on the coating/substrate system (Ref 10-13). 

Another important problem that has been studied recently is the 
theoretical analysis of the stress concentrations at the coating edges, 
cracks in the coatings and in the interface between the coating and 
substrate, and their relationship to fracture (Ref 14-16). 

This paper will concentrate, within the "elementary" ap- 
proach described, on the theory of macroscopic residual 
stresses in thick, nonhomogeneous (graded or layered) coat- 
ings. The sources of  residual stresses (quasi-plastic deforma- 
tions) will be given as functions of the coordinate 
perpendicular to the interface, but will not change in the di- 
rections parallel  to the interface. The analytical solution de- 
veloped in detail in Ref 17 and 18 will be used for platelike 
specimens, and differences for cylindrical and spherical 
specimens (Ref 19, 20) will be mentioned. Special cases and 
simplifications of  the general results for homogeneous coat- 
ings and for thin coatings will also be discussed. 

F. Kroupa, Institute of Plasma Physics, Academy of Sciences of 
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2. Comments on Residual Stresses in 
Nonhomogeneous Bodies 

The sources of residual stresses will be assumed to be given 
by the tensor of quasi-plastic deformations, e~ t), due to dis- 
tribution of impurities, temperature variations and phase 
changes, or plastic deformation, depending on the coordinates 
Xm and on time t. However, only slow time changes will be as- 
sumed so that the dynamic effects can be neglected and the static 
theory of  elasticity can be used. The development of  residual 
stresses can be studied in this way with t as a scalar parameter. 

Nomenclature 

A constant, m -1 
B constant 
e ~ e ~ quasi-plastic deformation 
e~., e T total deformation 
eij, e elastic deformation 
E Young's modulus, Pa 
h thickness, m 
k, K dimensionless parameters 
r radius, m 
R radius of curvature, m 
x, y, z cartesian coordinates, m 
T temperature, K 
uTt total displacements, m 
Y elastic constant, Pa 

Greek symbols 

cz coefficient of thermal expansion, K -1 
a9 Poisson's ratio 
if,i, ff stress, Pa 
O, q~ angles 

Subscripts 

0 substrate 
1 coating 
i serial number of a layer 
f final 
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For the final state studied in this paper, the parameter t will be 
left out. 

The quasi-plastic deformation will be supposed small: 

le~ << 1 (Eq 1) 

so that the linear theory of elasticity can be used. 
The total deformation, e~, can be written as the sum of quasi- 

plastic e ~ and elastic eij deformations: 

T _ e 0 + eo (Eq 2) e i j -  

where the total deformation is compatible; that is, total displace- 
ments, u T, exist: 

l F(a.~.h (au+hl 
= I 

Lt%) t.~ 
(Eq 3) 

and e~ fulfills the equations of  compatibility: 

"'"' ? i - E 3  

;_J 

Fig. 1 Nonhomogeneous body with residual stresses due to 
quasi-plastic deformations eO~{xt, x 2, x3) 

R R 

--2 

Fig. 2 Bending of the plate due to residual stresses 

2 T 
eij k elm ~ ~ e),, = 0 

~X k 3x m 
(Eq 3a) 

where ei# is the Levi-Civita antisymmetric tensor and Einstein's 
summation convention is used (Ref 21). 

In the elastically nonhomogeneous, generally anisotropic 
continuum with elastic stiffness coefficients Cokl(Xm), the resid- 
ual stresses ~0 follow from Hooke's  law: 

t~ (i = C ijk! ek/ (Eq 4) 

where ekl = e [ l -  e~l are the elastic deformations. The stresses 
must fulfill the equilibrium conditions (with zero volume 
forces): 

u=  0 
~x i 

(EqS) 

and the boundary conditions of  zero external tractions: 

v61 = 0 (Fxl 6) 

at points x~) of the body surface S with normals vi(x~) ) (Fig. 1). 
Equations 1 to 6 are written in the same form as for homoge- 

neous bodies. Their solution for homogeneous isotropic bodies 
is discussed in detail in Ref 22. However, their solution for non- 
homogeneous bodies is much more complicated because of  the 
dependence of Cijkl o n  the local coordinate. For example, the 
three equations for total displacements, Um,'r after substitution of  
Eq 2 to4 into Eq 5, 

r I F(au~l (auTll  l 
c , , (~ , , , ) l~ l l -~ - /+ l - -~ - / I -e~  =o (Eq7) 

a=, L L(~ ) ( ':'xk )J J 

are three differential equations (j = 1, 2, 3) of the second order 
for u T. These equations, however, have variable coefficients, 
OCijkl/Oxi and Cijkt, and can be solved analytically only in spe- 
cial cases. 

Up to now we have assumed that e ~ and Cijkl are continuous 
functions ofxm with continuous derivatives. The solution sim- 
plifies for a nonhomogeneous body composed of  n elastically 
homogeneous regions. Inside each region, r = 1, 2 . . . . .  n, the 
stiffnesses ~f~t are constant, and hence E 9 7 simplifies. How- 
ever, the solutions for individual regions, u~ (r) and c~f ), must sa- 
tisfy the interface conditions. For the so-called well-bonded 

x and tractions Tj v,~ij must cross interface, displacements Um = 
the interfaces continuously. 

Two simple, useful theorems on average residual stresses are 
a direct consequence of zero external forces: 

�9 The average values, '~, of  tractions Tj = niaijover any plane 
P with normal ni are zero. For example, for planes parallel 
to the xy plane, 

~zz = (l /P) f f  t~rz dx dy = 0 

P 

and in a similar way, o x. = o v. = 0. 
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The average values, ~,j , of the residual stress components 

aq in Cartesian coordinates over the whole volume Vof the 

body are zero. It can be shown for ~:: by integration of 

or: over z, 

ff z=(1)~!~ a dxdydz=O 

These theorems are general. They are valid for homogeneous 
and nonhomogeneous, isotropic and anisotropic bodies and 
even hold for large deformations. 

The solution of the system of Eq 1 to 6 simplifies substan- 
tially for coatings with some special symmetries, as described in 
the following sections. 

3. Nonhomogeneous Planar Coatings 

3.1 General Solution for Residual Stresses 

A plate infinite along the xy  plane and o f  thickness  h in the z 
direction is considered (Fig. 2), with Young's modulus, E, and 
Poisson's ratio, v, being (continuous or discontinuous) func- 
tions of coordinate z perpendicular to the plate plane: 

E =  E(z) 

v = v (z )  

z 0 < z < z 0 + h  (Eq8) 

That is, the plate is locally isotropic, but nonhomogeneous in the 
z direction. 

The sources of residual stresses are given by quasi-plastic de- 
formations: 

o o o e =eyy=e  (z) 

eOzz = ez(Z) 

e ~ = e ~ = e 0 = 0 (Eq 9) 
xy  x z  yz  

which are isotropic and homogeneous in the xy planes. No exter- 
nal forces act at the plate surfaces and at infinity. 

Because of the symmetry of the problem, the solution cannot 
depend on x and y and only two stress components are nonzero: 

% , ( z )  = ayy(Z) = a ( z )  

= 0  z.Z 

axy = Ox: = a.~ = 0 (Eq 10) 

Furthermore, 

e T = e T = eT(z) 
xx yy 

e "r = e~(z) 
Z.Z 

e T = e  T = e  T = 0  
x y  ~ yz  

e xx = eyy = e(z) 

= e (z) e z 

e = e  = e  = 0  
x y  x z  yz  

(Eq l l )  

Also, Hooke's law can be written in the form: 

0 1 - v  e = e T - e  = -----~ G 

2 v  
= e T -  e 0 = -  ~ -  ~ (Eq 12) 

ez  z Z 

where all the quantities are functions of z. 
The tensor of total deformation, e~, must fulfill the compati- 

bility equations (Eq 3a), which simplify in our case to one equa- 
tion, d2eT/dz 2 = 0, with the solution: 

e T = Az + B (Eq 13) 

where A and B are constants. 
The nonzero stress component, a, then follows from Hooke's 

law as: 

o(z) = Y(z)[Az + B - e~ (Eq 14) 

where the appropriate local elastic constant is: 

E(z) 
Y(z) - - -  (Eq 15) 

l - v(z) 

The stresses already meet equilibrium equations (Eq 5) and 
boundary conditions (Eq 6) at the plate surfaces: z = z0 and z = z0 
+h.  

The constants A and B can be determined from the condition 
of zero forces and moments at infinity: 

Zo +h 

5 ~(Z) dz = 0 

Z o 

zo+h 

S ~(z)  z dr. = 0 

7- 0 

(Eq 16) 

When Eq 14 is inserted in Eq 16, a system of two linear alge- 
braic equations for the constants A and B follows: 

S A + F B = N  

I A + S B = M  (Eq 17) 

where the constants F, S, I, N, and M are given in the form of in- 
tegrals: 
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zo+h 

F = S  Ydz 
�9 7. 0 

S = S Y z d z  
z o 

zo+h 

l= ~ y z2 dz 

z o 

:.o+h 

N =~ Ye~ 
z o 

zo+h 

M = ~ Y e ~  
z 0 

(Eq 18) 

Therefore, the constants A and B can be calculated as: 

(FM - SN) 
A -  

(FI - S 2) 

(IN - SM) 
B - (FI  - S 2) (Eq 19) 

where 

D = ( F I -  S 2) > 0 

The stresses in the plate are now determined: There are ten- 
sile or compressive stresses o(z) parallel to the plate surface 
(isotropic; i.e., the same in all directions in the xy plane) with the 
dependence on z given by Eq 14, where the constants A and B are 
given by Eq 19 with Eq 18. The stresses depend on quasi-plastic 
deformation e~ but not on e~ there is a free dilatation in the 
z direction. 

The total deformations eT(z) and eTz(z) follow from Eq 13 and 
12 with Eq 14, and the total displacements u~ can be calculated 
from Eq 3 as: 

u T = Azx + Bx 

u T = Azy + By 

z 

(Eq 20) 

The displacements in the vicinity of an arbitrarily chosen 
point, x = y = 0, are given as functions of x, y, and z. The system 
of planes z = const, will be deformed into a system of  rotational 
parabolic surfaces with the radius of curvature R at the point x = 
y = 0 :  

R = - ( A J  (Eq 21) 

where A is given by Eq 19. For A > 0 (R < 0), the center of  cur- 
vature is in the lower half-space and for A < 0 (R > 0) in the up- 
per half-space (Fig. 2). 

3 . 2  Comment on Plane Strain and Plane Stress 

A plate that is infinite in dimension in the xy plane and with 
zero forces at infinity has been considered thus far. This state can 
be called the "free plate" state. Some authors consider a different 
mode of the plate deformation: 

�9 For plane strain with respect to xz planes, the condition 
e~y = 0 is introduced and the symmetry condition t~xx = ffyy 

is then no longer valid. Instead, ~vv = V~xx-eOE, and 
Hooke's law takes the form: 

(1--V2"~ 0 
exx=l E laxx +re  

eyy  = - -e  0 

Iv(1 - v) ]  0 
e=-[ - - -F- - -J% , + V e  (Eq 12a) 

The solution is completely given by ffxx(Z) = if(z), which 
can again be calculated from Eq 14 with Eq 17 to 19, with 
the following modification: Now Y= E/(1 - v  2) and (1 + 
v)e 0 appears instead ofe  0 in Eq 14. Note that the stresses are 
no longer purely residual, as external forces have to act at 
external xz planes. 

�9 For plane stress with respect to xz planes-- that  is, for a thin 
hand in the y direction (and infinite only in the x direc- 
tion)---ffyy = 0 and Hooke's  law simplifies to: 

~xx 

__(V)~ (Eq 12b) eyy = e c = E xx 

The solution is again completely given by ffxx(z)= c(z), 
which can be calculated from Eq 14 with Eq 17 to 19, with 
one modification: Y = E. 

In further considerations, the "flee plate" state defined by Eq 
9 to 12 will be assumed. The cases of  plane strain and plane 
stress can be treated with trivial modifications. The stress com- 
ponent ~xx=~(z) follows from Eq 14 with the mentioned 

for u t differ slightly from Eq changes; however, the expressions T 
20, but Eq 21 for curvature remains valid in the xz plane. 

3.3 C o m m e n t  o n  Similarity 
An additional comment from the point of view of similarity 

in nonhomogeneous elastic bodies can be proved if nondimen- 
sional coordinates x '  = x/h, y" = y/h, and z' = z/h are introduced. 

In plates of different thickness h with the same dependences 
of the elastic constants E(z') and v(z') and of quasi-plastic defor- 
mation e~ ") on z' ( i . e . ,  in "similar" plates), the stresses ~O{z') 
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and the deformations eT(z ") and eij (z') at the corresponding 
points z" = z/h are identical. They do not depend on h. 

On the other hand, the displacements ux,T uy,T and u T,. as well 

as the radius o f  curvature R, are linearly proportional to h. 

3.4 Residual Stresses in a Nonhomogeneous 
Coating with a Linear Dependence of 
P r o p e r t i e s  o n  z 

For a homogeneous  substrate of  thickness h0, the origin of  
coordinates will be chosen at the interface, that is, z0 = -h0 (Fig. 
3a). Then in the substrate, -h0  < z < 0, the elastic constant, Y = 
Y0 = E0/(I - v0), and the linear thermal expansion coefficient,  (x 
= a0, are constant. 

The coating of  thickness hi varies in its properties Y and (~ 
linearly from the values Y0 and a0 in the interface to the given 

values Y1 and (~l at the upper surface; fo r0  < z <_ hl, Y = Y0 + (YI 

- Yo)(z/hO and a = a 0 + ( a l  - (Xo)(Z/hl). Residual thermal 
stresses are due to cooling of  the entire plate from T to Tf so that 

in the substrate e 0 = (~o(Tf - 7") is constant and in the coating, for 
0 < z < h ] :  

e ~ = [a o + (o~ i - Oto)(z/hi)](T f - T) 

= e 0 + ( e T -  e~ 

In this case, the constants F, S, I, N, and M can be calculated 
by integration from Eq 18 and are given in detail in Re f  17. 

The results will be i l lustrated for a special  case. Here,  the 
substrate is o f  steel (Y0 = 285 GPa, a 0 = 12 • 10 4 K - i )  and 

the proper t ies  o f  the coat ing  vary l inearly from these values 
at the in terface  to the values  o f  a lumina  at the upper  surface 
(Y1 = 450 GPa  and a l  = 8 x 10 4 K-I) .  Residual  stresses have  
deve loped  dur ing coo l ing  f rom T = 1020 ~ to Tf = 20 ~ so 
that e 0 = - 1 2  x 10 -3 and e 0 = - 8  x 10 -3. The ratio o f  the coat-  

ing and substrate thickness  is chosen to be hl/h o = 1/10. The 
residual stresses o(z)  in a plate f rom Fig. 3(a) are g iven  in Fig. 

4 by sol id lines. Because  o f  a cont inuous  course o f  Y(z) and 
eO(z), o(z)  is also cont inuous  at the interface.  The  radius o f  
curvature  is R/hi = - 8 . 4 2  • 103. In a plate with two-s ided  

symmetr ica l  coat ings  (Fig. 3b), the stresses are g iven  in Fig. 
4 by a dashed line. 

/~ 7 / / / ~  " / / / / / ,  h 

rh, _ 
�84 

~ / " / / / /  h i 

a) b) 

Fig. 3 Substrate 0 with coating 1. (a) On one surface. (b) Two-sided 
symmetrical coatings 

3 . 5  L a m e l l a r  C o a t i n g s  

For a plate composed o f  n + 1 homogeneous  layers o f  thick- 
ness h i = Zi+l - zi, where i = 0, 1, 2 . . . . .  n (in other words, a sub- 
strate of  thickness h0 covered by n homogeneous  coatings), the 
elastic constants E i and vi, and thus also Yi = E//(1 - vi), are con- 
stant within each layer. The quasi-plastic deformation e ~ will 
also be taken constant in each layer; in the case o f  residual ther- 
mal stresses due to cool ing from high temperature T to  the final 
temperature Tf, it is e ~ = a,(Tf - T), with constant cti, Tf, and T. 

Integrals in Eq 18 can be calculated as: 

n 

F = Z Yihi 
t = 0  

n 

\ / 1 = 0  

n 

n 

N = Z e7 Yihi 
t = 0  

n 

eO (Eq 22) 

The constants A and B then fol low directly from Eq 19. The 
stresses o(z) can be obtained from Eq 14: 

ok(z) = Yk(Az + B - e O) 

zk < z < zk+ l (Eq 23) 

For discontinuous changes of  Y(z) and eO(z), the stresses o(z), 
elastic deformations e(z) and ez(z), and total deformation eXz(Z) 
will also be discontinuous at the interfaces z = Zl, z2 . . . . .  zn. On 
the other hand, the total deformation eT(z) = Az + B and the total 

z /h .  
k 

Oj 

o , r~,6o, 
200  u [ G P o l  

u 

-1 

. . . 5 - 1 5 0 0  - 1 0 0 0  - 5 0 0  

~G'[MPo} 

e 0 - 0~! 
o 

=/h. 
),1 

L ~ 

% 

I 
Fig. 4 Residual stresses o(z6) in a graded coating on a homogeneous 
substrate for given Y(Z) and eV(z) for k = h l/hO = 0.1 Solid lines, plate 
bending; dashed lines, two-sided symmetrical coatings 
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T T T �9 displacements ux, Uy, and u= given by Eq 20 remain continuous 
functions of z. The radius of  curvature remains according to Eq 
21,R = - I / A .  

In cases when the plate does not b e n d - - f o r  example, for a 
symmetrical arrangement with respect to the central plane (simi- 
larly as in Fig. 3b for n = 1)---A = 0 and the stresses are then 
constant in each layer: 

I ] • (e~ e~ h, 

[,=o 

C k  = Yk" n (Eq 24) 

Lamellar coatings have been treated in a similar way in Ref 23. 

3.6 Simplification for a Homogeneous Coating 

3.6.1 Thick Coating 

For a plate made of a homogeneous coating of thickness h 1 
on a homogeneous substrate of thickness h 0, the elastic parame- 
ters Y I = E I / ( 1 - V l )  and Y0=E0/ (1 -Vo)  are constant. The 
quasi-plastic deformations e ~ (e.g., e ~  ~tl(T f -  T 0)  and e ~ 
(e.g., e0 ~ = r f - To)) will also be assumed to be constant. We 
shall give the exact solution for this case, in contrast to the sim- 
plified formulas that are only approximately valid for very thin 
coatings, often used in the literature. The solution follows as a 
special case of  lamellar coatings for n = 1 from Eq 23, 22, and 
19. 

It can be shown by rearrangement of  the expressions (B - e 0) 
and (B - e ~ in Eq 23 that the stresses are proportional to the dif- 
ference of dilatations (e ~ - e~): 

0 [c(z/ho) - bl]  
CI(Z ) = Yl(ey - e0)- -~- for0 < z < h 1 

Co(Z) = Yo(e~ - e O) [c(z/h~ + b~ for-h  0 < z < 0 (Eq 25) 
d 

where 

c = 6K(k + k 2) 

b 1 = 1 + K(3k 2 + 4k 3) 

b 0 = K(4k + 3k z) + g2k 4 

d = 1 + K(4k + 6k 2 + 4k 3) + K2k 4 (Eq 26) 

Here, the nondimensional  parameters k and K are used: 

h 1 
k = - -  

h o 

Y1 
K = - -  (Eq 27) 

ro 

The radius of  curvature R = -1 /A can be written in the form: 

dh o 
R = - 6K(e o _ eO)( k + k2 ) (Eq 28) 

The stresses are discontinuous and of opposite sign at the inter- 
face z = 0 : c 1 ( 0  +) = - r l ( e  0 - e ~  c0 (0 - )=  ro(e O -  e~ 
The stresses reach zero values at points z~ =blho /c  and 
zO = -boho/c ifz~ < h 1 and z~ > -ho. This solution is equivalent to 
that given previously by Chiu (Ref 24), which is presented in a dif- 
fel~ent form and derived in a different way. 

The results simplify when bending is prevented, for example, 
for two-sided symmetrical  coatings (Fig. 3b). It follows directly 
from Eq 24 with n = 1 that the stresses are then constant in the 
coating and in the substrate: 

Yl(e 0 - e O) 

c1 - (1 + Kk) 

Yo(e 0 - eO)Kk Yl(e 0 - e~ 

c 0 -  (1 + Kk) - (1 + kK) (Eq29) 

where, of course, c0 = - k c l .  
The stresses given in Eq 25 and 29 are compared in Fig. 5 for 

a special case of  a homogeneous alumina coating on a steel sub- 
strate with the numerical values of  all parameters given in sec- 
tion 3.5 (k = 0.I ,  K = 1.591, Yl(e 0 - e~) = 1818MPa). It should 
be mentioned that the value of Y -- 450 GPa corresponds to bulk 
alumina with low porosity and that for a plasma-sprayed alu- 
mina coating the value of Y1 will be much smaller (because of a 
smaller value o f E  1 due to porosity and the imperfect contact be- 
tween the deposited splats of  material) (Ref 25). 

The effect of  the thickness ratio k = hl/ho on the distribution 
of stresses for the case of homogeneous coatings (Eq 25 and 29), 
is illustrated in Fig. 6. The maximum possible stress in the coat- 
ing for k ---> 0 is called the saturation stress, c l M =  Yt(e ~ - e~ 

3.6.2 Simplification for Thin Coatings 

The results simplify for a thin coating on a thick substrate, 
that is, for k = hl /h  0 << 1. They will be introduced under the as- 
sumption that the elastic constants Y1 and Y0 are of  the same or- 
der of magn i tude- - in  other words, that the ratio K = Y1/Yo is of  
the order of 1. (The simplification of the results for cases where 
K << 1 or K >> 1 can be easily shown in a similar way.) If  the 

2 members of the order ofk  are neglected with respect to 1, it fol- 
lows from Eq 25 and 28 that: 

c I = - Y l ( e  ~ - e~ + 4kK) for0 < ~=~ < h 1 

[6(1 + k)(z/ho) + (4 + 3k)] 
O0(Z) -- Yo(e~ - eO~ (1 + 4kK) 

for -h  0 < z < 0 (Eq 25a) 

with constant stress a l  in the coating, however, with bending of  
the specimen with the radius of curvature R = - l / A :  

h0(l + 4kK) 
R -- - (Eq 28a) 

6kK(e~ - e~ + k) 
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If the terms of the order o fk  also are neglected with respect to 
unity, then: 

61 = - Y l ( e  0 - eg) 

+ 3 Z 
~ 1 7 6 1 7 6 1 7 6 1 7 6  1 ( 2 ]  (h-o0)] 

for-h  0 < z < 0 (Eq 25b) 

and with bending: 

h 0 h2Yo 
R =  

6kK(e O - e  O) 6h la  1 
(Eq 28b) 

The stresses (Eq 29) in a plate without bending simplify 
for k = hffho << 1 to: 

61 = - Y l ( e  ~ - e o) 

60 --- Yo(e ~ - e ~ kK = Yl(e 0 - e~ ) (Eq 29a) 

3 .7  C o m p a r i s o n  o f  N o n h o m o g e n e o u s  a n d  
Homogeneous C o a t i n g s  

The results for graded coatings (section 3.4 and Fig. 4) will 
now be compared with those obtained for the case of homogene- 
ous coatings (section 3.6 and Fig. 5). Whereas for a graded coat- 
ing (with a continuous change of elastic and thermal properties 
across the interface) the stresses at the interface remain rela- 
tively small, the stresses in the homogeneous coating at the in- 

terface are high. This shows the main advantage of graded coat- 
ings: The absolute value of  nominal stresses at the interface is 
smaller; therefore, the concentration of  these stresses at inter- 
face defects (e.g., at cracks or at coating edges) will also be 
smaller than in the case of discontinuous changes of properties 
at the interface. This effect should result in better adhesion of 
graded coatings. 

The thickness dependence of the residual stresses in the coat- 
ings from Fig. 6 shows that the stresses are higher in thinner 
coatings and approach the maximum possible value 
t~ 1 = - Y l ( e  ~ - e O) for k = hl/ho ---> O. For thicker coatings, re- 
laxation of the coating stress due to bending and elongation or 
contraction of  the substrate takes place. 

This is, of  course, valid only under the assumption that the 
quasi-plastic deformations e ~ and e ~ do not depend on the coat- 
ing thickness. However, for some technologies--for  example, 
plasma spraying of coat ings-- the temperature distribution de- 
pends on the thermal conductivity of  the coating, the deposition 
rate, the coating thickness, and other parameters. The quasi- 
plastic deformations e~ and e~ then also depend on the coat- 
ing thickness and may lead on the contrary, to an increase of 
thermal residual stresses with coating thickness. This effect can 
be explained by a complex approach based on simulation of the 
process of  deposition. 

3 . 8  C o m m e n t s  o n  S o m e  O t h e r  P r o b l e m s  

3.8.1 Deposition Stresses 

The residual thermal stresses discussed in sections 3.4 to 3.7 
can be called secondary cooling stresses. They are formed after 

,z /h.  

0,1- 
- 0  l 

2O0 

-qs 

, 
I I I  , , , , , , I , 

3130400500 -12.10"~-8.10 "s -1500 -100___~0 E[MSpOO} 

Y [6Po] e ~ 

Yo 
Q. 

eo - 0,5 

0,11 z/h~ 
i i i 0 | �9 | l i l 

5oo 

I 

-1 I 
Fig. 5 Residual stresses c(z) in a homogeneous coating on a homogeneous substrate for given Yt, Y0 and e~, e 8 and for k = h i/ho = 0.1. Solid lines, 
plate bending; dashed lines, two-sided symmetrical coatings 

Journal of Thermal Spray Technology Volume 6(3) September 1997--315 



k=2 

, 

/ 
l 

0,5 (///.///,,'/ 
o,I. 03 
o, o 
0,01 "-,. i / 

| , - - , 

-i -0.5 
k= Q01 / 

q05 / 
0,1 J 

0,2.._ 

z /ho  

/ 
/ 

s 

/ 

/ 
j i  

/ 

. . . .  0',5 

1 

s 

6" 
Y~{=I -~o' 

, . . I ! 

Fig. 6 
ous substrate for K = YIIYo = 1.591. (a) With bending. (b) For two-sided 

k=2 

I 
I 
! 
I 

0,5 I 
l l 

0,2 i I 
Q05 0,1 i t 

i I 
1 " 1 o 1 5  " ' o  

k= 0101"?' 5 
0,05~ ~" 

o,I 

z / h  o 

, I 

l i,o 
~ 012 

a) b} 

Effect of the relative coating thickness k = h 1/ho on stress distribution a(z) in nondimensional units for a homogeneous coating on a homogene- 
symmetrical coatings 

deposition, during cooling of the entire plate (consisting of the 
coating and substrate) from high temperature T(or Tl, To) to the 
final temperature Tf. 

However, residual stresses can originate during the deposi- 
tion process itself (e.g., during thermal spraying by gradual 
deposition of  thin layers) as thermal or intrinsic residual 
stresses. They can be called deposition stresses or, in the case of 
thermal stresses, primary cooling stresses. During this process, 
new upper layers influence the stresses in the old lower layers. 
The formation of  the deposition stresses (and also of subsequent 
secondary cooling stresses) is usually studied within the com- 
plex approach by computer simulation (Ref 8, 9). 

We have studied (Ref 18) the gradual formation of the pri- 
mary cooling stresses analytically by a generalization of  the ap- 
proach used in section 3.1. For simplicity, however, the study 
was conducted for a symmetrical two-sided coating formation 
(i.e., without bending). 

Only one simple example will be mentioned here. The sub- 
strate of  half-thickness h o is held at constant temperature Tf dur- 
ing coating deposition. The homogeneous coatings are 
gradually and symmetrically deposited as thin layers (of thick- 
ness dz), which are cooled from temperature T to Tf before the 
next thin layer is formed. According to Eq 25b, stress 
ol(Z ) = -YI  eO, where e 0 = ~ l ( T f -  T) is reached temporarily in 
the formed thin layer. Figure 7 shows the final deposition stress 
Od(Z) in the formed coating for different thickness ratios, k = 

hl/h o. The stresses reach the maximum tensile value ffd = -Y] e~ 
(it is e 0 < 0) at the upper surface independently of  the thickness 
ratio k; however, they are relaxed inside the coating. On the 
other hand, the secondary cooling stresses formed by cooling of  
the final coating/substrate system from T to Tf (section 3.6.1 and 
Fig. 6b) are compressive in the coating. 

3.8.2 Effect of  the Substrate Temperature 

In sections 3.4 and 3.5, the coating and substrate were as- 
sumed to be at the common temperature Tat the beginning of the 
secondary cooling. The effect of  the substrate temperature on 
secondary cooling stresses is illustrated by the following simpli- 
fied example. 

The stresses in the homogeneous coating (with constant YI = 
El~(1 - Vl), hi, txl) start to form at a high temperature, T 1 = 1020 
~ The substrate (with constant Y0 = E0/(1 - v0), h0, ~t0) is kept 
at temperature T O (T1 >= - T  sub 0 ->=  Tf) during deposition, 
and the entire plate is then cooled to Tf = 20 ~ 

According to Eq 29a (for k = hl/h 0 << 1), ol  = -Y]( e~ - e~ 
where e ~ = cq(Tf - T0, e0 ~ = {x0(T f - To), so that the secondary 
cooling stress in the coating is Ol = Yl[Oh(Tl - Tf) - ct 0 (T O - 
Tf)]. 

The realistic values for the elastic constants of a plasma- 
sprayed alumina coating are El = 75 GPa (E 1 is decreased by the 
effect of microcracks and porosity) and v I --- 0.25, that is, YI 
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= 100 GPa. Furthermore, ct 1 --- 8 • 10 -6 K -], and for the steel sub- 
strate tx 0 = 12 x 10 - rK  -1. 

Therefore,  for a very hot substrate, T O = 1020 ~ ~1 = -400  
MPa, while for a very cold substrate, To = 20 ~ (~1 --- +800 
MPa. The secondary cool ing stress will be zero for To = Tf + 
((Xl/Ct0) (T 1 - Tf), that is, for To = 686 ~ Generally, in thin ce- 
ramic coatings on metal substrates (for (xl < (x0), the secondary 
cooling stresses will be tensile for cold substrates and compres-  
sive for hot substrates. 

3.8.3 Evaluat ion  of  Res idual  Stresses from Measurements  

Equation 28b is usually used for determination of  stresses 61 
in thin coatings (for hi << h0) from measurements of  curvature 
after deposition. The evaluation o f  stress 6l(Z) in thick, nonho- 
mogeneous coatings from the measurements  of  the plate curva- 
ture or deformation (based on results o f  section 3.1) is discussed 
in Ref  18. 

4. Coatings on Cylindrical Surfaces 

Residual stresses in thick, nonhomogeneous  coatings on cy- 
lindrical surfaces have been discussed in Ref  19, where, in cylin- 
drical coordinates r, (p, and z, the quasi-plastic deformations 
e~ e~  and e~ are assumed to be given as functions of  ra- 
dius r only. In other words, the cylindrical symmetry is pre- 
served. The analysis for thick, nonhomogeneous  coatings is 
more complicated than that for planar coatings (section 3.1). 

Y 
I I I 

Fig. 8 Substrate tube 0 with coating 1 ; nondimensional radii R = r/r 1 
are introduced. 

The results of  a special case only will be shown here: a homo- 
geneous,  plasma-sprayed alumina coating 1, r I < r < r 2 (with E l 
= 100 GPa) on a homogeneous  steel substrate tube 0, r 0 < r < r 1, 
with given different quasi-plastic vo lume dilatations, 

0 0 0 0 0 0 0 0 
e l r  = e l (  p = e lz  = e l ,  eor = eoq ~ = eoz = e 0. Nondimensional  radii 
are introduced in Fig. 8, R = r / r  1, R 0 = ro/r 1, R 1 = r l l r  I = 1, R 2 = 

r2/r l .  The stresses in the substrate and coating, Gia(r) (where i = 
0, 1, and i x = r ,  (p, z), are g iven in Fig. 9 in units 
(YlM = [E1/(I - Vl)]( e0 - e0) �9 

For thin coatings, hl = (r2 - rl)  << ho = (Q - ro), the results 
for planar coatings from section 3 can be taken as good approxi- 
mations for cylindrical coatings, with one modification. There 

are also nonzero stresses, G0r(r) and Glr(r), in the directions per- 
pendicular  to the interface that fulfill the boundary conditions 

O0r(r0) = 0, Glr(r2) = 0, however,  with the value at the interface 

G0r(rl) = G l r ( r l ) = - [ ( r  2 - r l ) / r l ] (~lM.  This value, however,  is 
much smaller and of  opposite sign than the l imiting value of  
stresses parallel to the interface in thin coatings, 

(Yl~  = (Yl,7 = (YlM = [ E 1 / ( I  - V l ) ]  ( eO - eO) �9 

5. Coatings on Spherical Surfaces 

Residual stresses in thick, nonhomogeneous  coatings on 
spherical surfaces have been discussed in Re f  20, where, in 
spherical coordinates r, (p, and O, the quasi-plastic deformations 
e~  and e ~  = e ~  are g iven as functions of  radius r only; 
that is, the spherical symmetry is preserved. 

For the special case of  a thick, homogeneous  alumina coating 
I, r I < r < r 2 (with E 1 = 100 GPa), on a homogeneous  substrate 
in the shape o f  a full sphere (r 0 = 0), 0 < r < r I, with different ho- 
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mogeneous quasi-plastic volume dilatations, e~ = e~ = e 00 = e~ 
e~ = e~ = e~ = e 0, the stresses in the substrate sphere and in the 
coating, oia(r), i = 0 ,  1, c t = r ,  gl, 0 are given in units 
r iM = [E1/(1 - vl)](e00 - e01) in Fig. I0 for three coating thick- 
nesses, with nondimensional radii R2 = r2/rl = 2, 1.1, and 1.01. 

For a thin coating on a sphere or a hollow sphere, the results 
for planar coatings from section 3 can again be taken as good ap- 
proximations, with one change. There are also nonzero stresses 
(i0r(r) and Clr(r) that fulfill the boundary conditions C0r(r0) = 0 
(if r0 ~: 0) and Clr(r 2) = 0, however, with the value at the inter- 
face a0r(rl) = erlr(rl) = -2[(r2 - rl)/rl]O1M. This value is again 
much smaller than the limiting value of  stresses in thin coatings 
parallel to the interface, 131tp=OlO=~lM=[El / ( l -Vl)]  

.. 

o8i 
07 
O6 
O5 

0.4 
03 
02 
13.'I- 
0 
-0.1- 

E1 I~O_~OI 

--SS RO. 
38' : i i I : : , : 1: 

c;, - 0 2 -  

R~ R2 
�9 R = - -  ~ 

Fig. 9 Residual stresses 6ia in units dIM = [E1/(I - Vl)](e 0 - e 7) in 
an alumina coating (1 < R < 1.04) and a steel tube (0.8 < R < 1) 
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Fig. 10 Residual stresses aia in units 61M =~lOmax = [El/(1 -Vl)] 
(e00 - el 0) in an alumina coating 1 < R < R 2 on a full steel sphere 0 < R < 1, 
for three coating thicknesses: R 2 = 2, 1.1, and 1.01 

(e 0 - e~ However, the value •,r(rl) for spherical coatings is two 
times larger than for cylindrical coatings (section 4). 

6 .  D i s c u s s i o n  

A group of  selected problems regarding the theory of  residual 
stresses in coatings has been discussed in this paper. The unify- 
ing point is the assumption of  thick coatings; that is, the ratio of  
the coating thickness h 1 to the substrate thickness ho, k = hllho, 
can be large. Moreover, the coatings are considered elastically 
nonhomogeneous, with the elastic properties given by functions 
of the coordinate z perpendicular to the interface. The general re- 
sults are then valid for any graded or layered coatings, as well as 
for nonhomogeneous substrates or for inhomogeneous plates 
where no distinction need be made between the coating and the 
substrate. 

The sources of residual stresses have been assumed to be 
given by the quasi-plastic deformations e ~ For example, in the 
case of  ion implantation, the quasi-plastic volume dilatation 
e~ = e~ = e~ = e~ will be proportional to the ion concentra- 
tion c(z); that is, e ~ = koc(z), where c(z) can be taken from meas- 
urements or calculated. In the case of secondary cooling 
stresses, e ~ = o~(z) [Tf -  T(z)], where Tf is the final temperature 
and T(z) is the temperature at which the stresses start to develop 
during cooling. 

In section 3, a general solution of the residual stresses in pla- 
nar coatings is given in the so-called elementary approach (for 
the final coating/substrate system), when the dependence of  the 
elastic constants on z and the distribution of  the quasi-plastic de- 
formations e~ is known. The solution is given in the analytical 
form; however, it contains constants given by integrals (Eq 18) 
which, for complicated dependences Y(z) and e~ must be cal- 
culated numerically. In the analytically treatable case in section 
3.5, for a linear dependence of elastic constants on z in graded 
coatings, the main advantage of  graded coatings is shown: 
namely, that small residual stresses occur in the interface. Some 
differences for coatings on cylindrical and spherical surfaces are 
mentioned briefly in sections 4 and 5. 

We have discussed these problems in more detail in Ref 17 to 
20. The residual stresses in thick, nonhomogeneous planar coat- 
ings have also been studied recently by other authors (Ref 26, 
27). 

The general results presented may show the limits of  applica- 
tion of simple formulas valid for homogeneous and thin coat- 
mgs. 

Some final comments will be made concerning the impor- 
tance of the residual stresses for fracture in the case of  coated 
systems. Fracture usually starts at defects, especially at mi- 
crocracks in the coating or in the interface and at the coating 
edges (Ref 16). An infinite coating (in the x and y directions) 
with no defects or edges has been considered in this paper, and 
the resulting residual stresses can be called nominal residual 
stresses. They can be used as the first step in the theoretical in- 
vestigation of  the fracture process as nominal stresses in the 
analysis of the crack stability and propagation using fracture 
mechanics methods. The fracture process is governed by the 
concentration of  the sum of the residual stresses and of the 
stresses from external loading at the defects, and residual 
stresses often play the decisive role. 

318---Volume 6(3) September 1997 Journal of Thermal Spray Technology 



The theory  o f  nomina l  res idual  stresses in coat ings and its de- 
ve lopmen t  for  n o n h o m o g e n e o u s  and thick coat ings may  be im- 
portant  in te rms o f  i m p r o v e m e n t  of  the mechanica l  proper t ies  of  
bodies  with  such coatings.  It can  provide  guidel ines  for the 
proper  choice  o f  materials ,  o f  the coat ing internal  s t ructure and 
thickness,  and  o f  the detai ls  o f  the deposi t ion technology  (e.g., 
on  heat ing or  cool ing  o f  the substrate) .  This  should lead to opti-  
mum residual  s t r e s s e s - - t h a t  is, to smal l  or compress ive  stresses 
at the interface or  at the upper  surface. These  results  should  en- 
sure greater  coat ing lifetimes. 
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